The generator matrix

 1  0  1  1  1 X^2+X  1  1 X^3+X^2  1  1 X^3+X  1  1  0  1  1 X^2+X  1  1 X^3+X^2  1  1 X^3+X  1  1  0  1  1 X^3+X  1  1 X^2+X  1 X^3+X^2  1  1  1  1  1  0 X^3+X  1  1  1  1 X^3+X^2 X^2+X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^3  1  1 X^3+X^2+X X^2  1  1  X X^3  1  1 X^3+X^2+X X^2  X X^2  1  1  1  1 X^3+X^2+X  1  1  1  1  X X^3 X^2  X X^3
 0  1 X+1 X^2+X X^2+1  1 X^3+X^2 X^3+X^2+X+1  1 X^3+X X^3+1  1  0 X+1  1 X^2+X X^2+1  1 X^3+X^2 X^3+X^2+X+1  1 X^3+X X^3+1  1  0 X+1  1 X^2+X X^3+1  1 X^3+X^2 X^3+X^2+X+1  1 X^2+1  1 X^2+X X^3+X  0 X+1 X^3+1  1  1 X^3+X^2 X^3+X X^3+X^2+X+1 X^2+1  1  1 X^3 X^3+X^2+X X^2  X X^3 X^3+X^2+X X^2  X X^3+X+1 X^3+X^2+1 X^2+X+1  1 X^3+X+1 X^3+X^2+1 X^2+X+1  1  1 X^3 X^3+X+1  1  1 X^3+X^2+X X^3+X^2+1  1  1 X^2 X^3+X^2+1  1  1  1  1 X^2+X+1  1 X^3+X^2+X  X  1 X^2 X^2+X+1 X^3 X^3+X+1  1  1  1  1  1
 0  0 X^3  0 X^3  0 X^3  0 X^3 X^3  0 X^3  0  0  0 X^3  0  0 X^3 X^3 X^3  0 X^3 X^3 X^3  0 X^3  0 X^3  0  0  0 X^3 X^3  0 X^3  0 X^3 X^3  0 X^3  0  0 X^3 X^3  0  0 X^3 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3  0  0 X^3  0  0  0  0 X^3 X^3  0 X^3  0  0 X^3 X^3 X^3  0 X^3  0 X^3 X^3  0  0 X^3  0 X^3 X^3  0
 0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0  0 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3  0  0  0 X^3  0 X^3  0 X^3  0  0 X^3  0 X^3 X^3  0  0 X^3 X^3  0 X^3  0  0 X^3  0 X^3 X^3  0 X^3  0  0 X^3  0 X^3 X^3 X^3 X^3  0  0  0 X^3  0 X^3  0  0 X^3  0  0  0 X^3  0 X^3 X^3 X^3  0  0 X^3 X^3 X^3  0  0

generates a code of length 93 over Z2[X]/(X^4) who�s minimum homogenous weight is 92.

Homogenous weight enumerator: w(x)=1x^0+177x^92+672x^93+168x^94+3x^96+3x^124

The gray image is a linear code over GF(2) with n=744, k=10 and d=368.
This code was found by Heurico 1.16 in 60.5 seconds.